191. Struktur des Hydrazinolyseproduktes von N-(3-Oxo-1-isoindolinyliden)alanin-äthylester

von Stanislav Chaloupka, Jost H. Bieri und Heinz Heimgartner¹)

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(18.VIII.80)

Hydrazinolysis of N-(3-Oxo-1-isoindolinyliden)alanin Ethyl Ester, Structure of the Product

Summary

Treatment of N-(3-oxo-1-isoindolinyliden)alanin ethyl ester (6) with hydrazine hydrate leads to 4-methyl-2,3,4,6-tetrahydro[1,2,4]triazino[3,4-a]isoindole-3,6-dione (8, Scheme 3) and not to the previously postulated 6-hydroxy-2-methyl-2,3-dihydro-imidazo[2,1-a]phthalazin-3-one (7, cf. [2]). The structure of 8 has been established by an independent synthesis as well as by the X-ray analysis of the reaction product 11 from 8 and 3-dimethylamino-2,2-dimethyl-2*H*-azirine (1, Scheme 4). A reaction mechanism for the formation of 8 from 6 is suggested in Scheme 5.

Vor kurzem berichteten wir über die Umsetzung von 3-Dimethylamino-2,2dimethyl-2*H*-azirin (1) mit Phthalohydrazid (2) [1]. Das dabei gebildete zwitterionische Produkt 3 lieferte bei der Hydrolyse mit wässeriger NaHCO₃-Lösung unter anderem 6-Hydroxy-2,2-dimethyl-2,3-dihydro-imidazo[2,1-*a*]phthalazin-3on (4, Schema 1). Die Struktur von 4 ist mit Hilfe der spektroskopischen Daten sowie der in [1] beschriebenen Reaktionen bestimmt worden. Für den direkten spektroskopischen Vergleich synthetisierten wir auf dem in [2] beschriebenen Weg (vgl. Schema 2) die Verbindung A (C₁₁H₉N₃O₂, Smp. 230-231°), der die Struktur des 6-Hydroxy-2-methyl-2, 3-dihydro-imidazo[2, 1-*a*]phthalazin-3-ons (7) zugeschrieben wurde [2]. Der Vergleich der IR.-Spektren der beiden Verbindungen 4 und A (Fig. 1) zeigt aber deutlich, dass es sich bei A nicht um die zu 4 homo-

¹) Korrespondenzautor.

0018-019X/80/7/1797-08\$01.00/0

© 1980 Schweizerische Chemische Gesellschaft

loge Verbindung 7 handeln kann. Aufgrund der im folgenden beschriebenen unabhängigen Synthese sowie der *Röntgen*-Kristallstrukturanalyse eines Derivates von A kommt dem Hydrazinolyseprodukt von 6 die Struktur des 4-Methyl-2,3,4,6-tetrahydro[1,2,4]triazino[3,4-a]isoindol-3,6-dions²) (8, Schema 2) zu.

Umsetzung des aus 2-Phthalimidopropionsäure (9) [3] und Phosphorpentachlorid erhaltenen Säurechlorids mit Benzyloxycarbonyl-hydrazin (Carbazinsäurebenzylester) [4] in Essigester bei 0 bis 25° lieferte nach Chromatographie an Kieselgel in 89% Ausbeute das geschützte Phthalimidopropionohydrazid 10. Die Entfernung der Benzyloxycarbonyl-Schutzgruppe erfolgte hydrogenolytisch in äthanolischer Salzsäure über Pd/C. Das in etwa 90% Ausbeute erhaltene Hydrochlorid des freien Phthalimidopropionohydrazids war mit einer zweiten Verbindung verunreinigt, die sich als das gesuchte 8 erwies. Beim Erhitzen des Hydrochlorids auf 140° i.V. verlief die Cyclisierung zu 8 praktisch quantitativ. Das so erhaltene 8 war in allen spektroskopischen Daten identisch mit dem Produkt A, welches aus der Hydrazinolyse von 6 gewonnen wurde.

Neben den in *Figur 1* abgebildeten IR.-Banden sind für die Verbindung 8 die folgenden Daten charakteristisch³): Im ¹H-NMR.-Spektrum (DMSO- d_6)⁴) erscheint ein breites *s* bei 11,2 ppm, das dem sauren H-N(2) entspricht. Die aromatischen Protonen absorbieren im Bereich von 8,0-7,5 ppm,

²) Der nach den neuesten IUPAC-Regeln empfohlene Name von 8 ist: 4-Methyl-2,3,4,6-tetrahydro[1,2,4]triazixino[3,4-a]isoindol-3,6-dion.

³) Alle aufgeführten Verbindungen weisen korrekte Elementaranalysen für C, H und N auf $(\pm 0.3\%)$.

⁴) ¹H-NMR.-Spektren bei 60 MHz in Hexadeuteriodimethylsulfoxid (DMSO-d₆); Angabe der chemischen Verschiebungen in ppm relativ zu TMS (=0 ppm), Kopplungskonstanten J in Hz; s=Singulett, d=Dublett, t=Triplett, qa=Quadruplett, m=Multiplett.

Fig. 1. Ausschnitte aus den IR.-Spektren (KBr) der Verbindungen 4 und 8

H-C(4) als qa (J=7 Hz) bei 4,69 ppm und H₃C-C(4) als d bei 1,60 ppm. Das ¹³C-NMR.-Spektrum (DMSO-d₆)⁵) weist neben den Signalen für die aromatischen C-Atome C(6a) bis C(10a) drei Signale bei tiefem Feld auf, die den übrigen sp²-hybridisierten C-Atomen C(6) und C(3) (162,2 bzw. 160,6 ppm) sowie C(10b) (134,8 ppm) zugeordnet werden können. Das sp³-hybridisierte C(4) erscheint bei 46,8 ppm und CH₃-C(4) bei 14,1 ppm. Im Massenspektrum zeigt 8 als Basispik m/z 215 (M^+ , C₁₁H₉N₃O₂) sowie intensive Fragment-Ionenpike bei m/z 200 (C₁₀H₆N₃O₂), 172 (C₉H₆N₃O) und 130 (C₈H₄NO), deren Zusammensetzung durch hochauflösende Massenspektrometrie bestimmt wurden. Das UV.-Spektrum (Äthanol) weist Absorptionsmaxima bei 337,5 ($\varepsilon = 13700$), 294 (6500) und 284 nm (7100) sowie Schultern bei 272 (5800) und 260 nm (4800) auf.

⁵) ¹³C-NMR.-Spektren bei 25,2 MHz; Angabe der chemischen Verschiebungen der protonen-entkoppelten Signale in ppm relativ zu TMS (=0 ppm).

Schema 4

Da es sich bei **8** aufgrund des ¹H-NMR.-Spektrums um einen NH-aciden Heterocyclus mit einer der NH-Gruppe benachbarten Carbonylfunktion handelt, konnte erwartet werden, dass sich **8** mit 3-Dimethylamino-2, 2-dimethyl-2*H*-azirin (1) zu einem neuen Heterocyclus umsetzen lässt (vgl. dazu [5]). Tatsächlich reagierten äquimolare Mengen von **1** und **8** in Dimethylformamid bei 80° zu einem neuen Produkt. Nach chromatographischer Aufarbeitung an Alox (Methanol/Essigester/Tetrahydrofuran) und Umkristallisation aus Essigester/Tetrahydrofuran wurde in 63% Ausbeute eine Verbindung $C_{15}H_{14}N_4O_2$ vom Smp. 241-243° erhalten, der die Struktur von 2,2,4-Trimethyl-2,4-dihydro-1*H*,6*H*imidazo[1',2':1,6][1,2,4]triazino[3,4-*a*]isoindol-1,6-dion (**11**) zukommt.

Im IR.-Spektrum (KBr) weist 11 neben einer sehr intensiven, breiten Carbonylbande bei 1750-1730 cm⁻¹ weitere intensive Banden bei 1670 und 1640 cm⁻¹ auf. Das ¹H-NMR.-Spektrum (DMSO-d₆) zeigt neben dem *m* bei 8,2-7,6 ppm für vier aromatische Protonen ein *qa* (J=7 Hz) bei 5,15 ppm, ein *d* (J=7 Hz) bei 1,73 ppm und zwei *s* bei 1,35 und 1,32 ppm. Im Massenspektrum ist M^+ (m/z=282) wiederum Basispik. Die wichtigsten Fragment-Ionenpike sind m/z 254 (M^+ -CO), 239 (254-CH₃), 213 (254-C₃H₅), 198 (239-C₃H₅) sowie 130 (C₈H₄NO).

Da mit Hilfe der spektroskopischen Daten die Struktur des tetracyclischen Heterocyclus 11 nicht bewiesen werden konnte, wurde eine *Röntgen*-Kristallstrukturanalyse durchgeführt.

Kristalldaten. C₁₅H₁₄N₄O₂, Formelgewicht 282,30; Kristallsystem triklin, Raumgruppe $P\bar{I}$; Zellkonstanten (Standardabweichungen in Klammer): a = 8,896 (0,005), b = 9,135 (0,006), c = 9,751 (0,006) Å, a = 68,64 (0,05), $\beta = 69,43$ (0,05), $\gamma = 76,09$ (0,05)°. Die Elementarzelle enthält zwei Molekeln.

Diffraktometerdaten. Die zur Strukturbestimmung notwendigen Beugungsintensitäten (2256) wurden mit einem Syntex-R3-Vierkreisautodiffraktometer (ω -Scan) gemessen. Messbereich 0-50° (2 θ), Messtemperatur 18°, Strahlung Mo K_{α} .

Bestimmung der Struktur⁶). Es wurde mit 2580 Reflexen gerechnet; Anzahl der als beobachtet angenommenen Reflexe 2256 (87,4%). Ein Reflex wurde als beobachtet angenommen, wenn seine Nettointensität grösser war als das 1,96fache der Standardabweichung. Die Phasenbestimmung wurde mit Hilfe direkter Methoden und Tangensformelverfeinerung durchgeführt. Es wurde das Computer-Programm MULTAN verwendet [6]. Alle Atomparameter, mit Ausnahme derjenigen der H-Atome, wurden anisotrop verfeinert. Die berechneten Parameter der H-Atome wurden in den letzten Cyclen der «Kleinste-Quadrate-Verfeinerung» bis zu einem R-Wert von 0,043 als variable Grössen mitgeführt. Sie konnten in einer Differenz-Fourier-Berechnung ohne weiteres identifiziert werden.

Resultate. Diese sind in den Tabellen 1-3 sowie in Figur 2 zusammengestellt. Die Struktur von 11 ist durch die Atomkoordinaten in Tabelle 1 definiert; die für die Strukturbestimmung verwendete Atomnumerierung, die Bin-

⁶) Die Auswertung erfolgte auf einem Strukturrechner Syntex XTL.

Atom	<i>x</i>	<u>y</u>	<u>Z</u>	<u> </u>
O(13)	0,6691 (2)	0,5933 (2)	-0,0247(2)	a)
O(17)	0,8277 (2)	-0,1791(2)	0,4969 (2)	a)
N(3)	0,9142 (2)	0,2315 (2)	-0.0652(2)	a)
N(5)	0,7719 (2)	0,0773 (2)	0,3471 (2)	a)
N(11)	0,6574 (2)	0,3467 (2)	0,2636 (2)	a)
N(12)	0,7516 (2)	0,3408 (2)	0,1169 (2)	a)
C(1)	0,7441 (3)	0,4636 (2)	- 0,0176 (2)	a)
C(2)	0,8494 (3)	0,3932 (2)	-0,1457(2)	a)
C(3a)	0,8556 (2)	0,2114 (2)	0,0776 (2)	a)
C(4)	0,8972 (2)	0,0699 (2)	0,2036 (2)	a)
C(6)	0,7517 (2)	-0,0484(2)	0,4843 (2)	a)
C(6a)	0,6246 (2)	0,0174 (2)	0,6013 (2)	a)
C(7)	0,5553 (3)	-0,0581(2)	0,7558 (2)	a)
C(8)	0,4384 (3)	0,0333 (3)	0,8388 (2)	a)
C(9)	0,3936 (3)	0,1919 (3)	0,7704 (2)	a)
C(10)	0,4619 (3)	0,2665 (3)	0,6151 (2)	a)
C(10a)	0,5791 (2)	0,1757 (2)	0,5318 (2)	a)
C(10b)	0,6716 (2)	0,2146 (2)	0,3682 (2)	a)
C(14)	0,7458 (4)	0,3848 (3)	-0,2373(3)	a)
C(15)	0,9895 (3)	0,4874 (3)	-0,2492(3)	a)
C(16)	1,0644 (3)	0,0694 (3)	0,2125 (3)	a)
H-C(4)	0,8890 (22)	0,9679 (22)	0,1866 (20)	3,45
H-C(7)	0,4125 (28)	0,1650 (28)	0,1974 (27)	4,66
H-C(8)	0,6147 (24)	1,0149 (22)	0,0509 (23)	4,49
H-C(9)	0,6884 (27)	0,7412 (24)	0,1724 (24)	4,87
HC(10)	0,5721 (26)	0,6270 (25)	0,4295 (23)	4.27
H(1) - C(14)	0,3440 (33)	0,6886 (29)	0,1681 (29)	7,04
H(2) - C(14)	0,2919 (28)	0,5095 (28)	0,2923 (25)	5,47
H(3) - C(14)	0,1903 (32)	0,6671 (29)	0,3139 (29)	5,96
H(1) - C(15)	0,9544 (42)	0,5076 (38)	0,1915 (39)	4,18
H(2) - C(15)	0.0513 (33)	0,4099 (33)	0.2983 (30)	5.27
H(3)-C(15)	0,9348 (34)	0,5690 (31)	0,3319 (31)	6,42
H(1)-C(16)	0,0774 (26)	0,1581 (27)	0,2305 (24)	5.84
H(2) - C(16)	0,1515 (39)	0,0591 (33)	0,1064 (36)	8.60
H(3) - C(16)	0,0881 (28)	-0,0291(28)	0,2887 (27)	5,86

Tabelle 1. Koordinaten der Atome (Standardabweichungen × 10000) und isotrope Temperaturfaktoren

dungslängen und Bindungswinkel sind aus *Figur 2* ersichtlich. *Tabelle 3* enthält die berechneten Ebenen der vier Ringe, die wichtigsten Atomabstände von diesen Ebenen sowie die Winkel zwischen den Ebenen. Die räumliche Struktur der Molekel ist aus der Projektion in *Figur 3* ersichtlich. Daraus geht hervor, dass das Ringsystem der Molekel nahezu planar ist; die relativ kurzen C, N-Einfachbindungen C(1), N(12), C(3a), N(12), N(5), C(6) und N(5), C(10b), die auf ein teilweise delokalisiertes π -System hinweisen, sind ein Indiz für die Planarität bzw. sp²-Hybridisierung von N(5) und N(12).

Durch die voranstehend beschriebene Synthese von 8 (Schema 3) und die Röntgen-Kristallstrukturanalyse des Derivates 11 wurde bewiesen, dass es sich beim Hydrazinolyseprodukt von 6 um die (6,5,6)gliedrige Verbindung 8 und nicht um

Atom	B ₁₁	B ₂₂	B_33	B ₁₂	B ₁₃	B ₂₃
O(13)	7,36	3,09	3,66	1,44	- 1,23	- 0,69
O(17)	5,16	3,34	3,83	1,05	-1,28	-0,55
N(3)	3,90	3,06	2,68	0,31	-0,77	-0,85
N(5)	3,00	2,83	2,53	0,48	-0,72	-0,73
N(11)	3,60	3,06	2,73	0,32	-0,53	-1,05
N(12)	3,75	2,64	2,48	0,47	-0,60	-0,80
C(1)	4,23	2,65	3,09	0,27	-1,01	-0,56
C(2)	4,18	2,82	2,79	0,24	- 1,01	-0,66
C(3a)	2,79	2,60	2,96	0,12	-0,78	-1,01
C(4)	2,89	2,74	2,64	0,20	-0,72	- 0,93
C(6)	3,30	3,30	2,85	0,14	-1,25	- 0,59
C(6a)	2,87	3,55	2,69	-0,08	-1,10	-0,70
C(7)	3,51	4,16	2,96	-0,40	-1,27	-0,30
C(8)	3,47	5,77	2,55	-0,73	-0,67	- 1,05
C(9)	3,73	5,37	3,29	-0,22	-0,41	-2,01
C(10)	3,83	3,78	3,46	0,06	-0,72	-1,36
C(10a)	2,82	3,44	2,73	-0,20	-0,84	-1,04
C(10b)	2,82	2,73	2,75	0,19	-0,90	-0.92
C(14)	6,29	5,24	4,45	0,31	-2,63	-1,61
C(15)	5,20	4,00	4,03	- 0,48	-0,80	-0,25
C(16)	3,25	4,32	4,57	0,17	- 1,38	- 1,32

Tabelle 2. Anisotrope Temperaturfaktoren $T = \exp\{-1/4 (B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2 B_{12}hka^*b^* + 2 B_{13}hla^*c^* + 2 B_{23}klb^*c^*)\}$

Tabelle 3. Atomabstände von Ebenen (Å)

Ebene 1 durch C(6a), C(7), C(8), C(9), C(10) und C(10a): C(6a) -0,004, C(7) 0,003, C(8) 0,003, C(9) -0,006, C(10) 0,004, C(10a) 0,001

Übrige Atome: N(5) 0,031, C(6) - 0,009, O(17) - 0,057, C(10b) 0,041, N(11) 0,133

Ebene 2 durch N(5), C(6), C(6a), C(10a) und C(10b): N(5) 0,002, C(6) -0,007, C(6a) 0,010, C(10a) -0,009, C(10b) 0,004

Übrige Atome: C(3a) 0,228, C(4) - 0,139, C(7) 0,046, C(10) 0,000, N(11) 0,069, N(12) 0,193, O(17) - 0,042

Ebene 3 durch C(3a), C(4), N(5), C(10b), N(11) und N(12): C(3a) 0,090, C(4) - 0,125, N(5) 0,083, C(10b) 0,012, N(11) - 0,056, N(12) - 0,004Übrige Atome: C(1) 0,086, N(3) 0,264, C(6) 0,218, C(10a) 0,106, C(16) - 1,516

Ebene 4 durch C(1), C(2), N(3), C(3a) und N(12): C(1) 0,015, C(2) -0,013, N(3) 0,006, C(3a) 0,004, N(12) -0,013

Übrige Atome: C(4) 0,125, N(5) - 0,283, C(10b) - 0,303, N(11) - 0,157, O(13) 0,047, C(14) - 1,293, C (15) 1,218

Winkel zwischen Ebenen: Ebene 1/Ebene 2 1,28°; Ebene 1/Ebene 3 7,26°; Ebene 1/Ebene 4 166,37°

den (6,6,5)gliedrigen Heterocyclus 7 handelt. Im folgenden sollen mögliche Mechanismen für die zu 8 führende Hydrazinolyse diskutiert werden. In Analogie zur Reaktion von Iminophthalimid (=3-Iminoisoindolin-1-on) mit Anilin, Hydrazin oder Aminosäureestern, welche zur Bildung von 3-Phenylimino- und 3-Hydra-

Fig.2. Struktur der tetracyclischen Verbindung 11 mit verwendeter Numerierung der Atome, Bindungslängen (Å) und Bindungswinkeln (Grad)

Fig.3. ORTEP-Darstellung der Molekel 11

zonoisoindolin-1-on bzw. zu N-(3-Oxo-1-isoindolinyliden)aminosäureestern führt [2], kann für die Hydrazinolyse von 6 primär ein nucleophiler Angriff des Hydrazins an der Iminogruppe angenommen werden (Schema 5). Das dabei gebildete Zwischenprodukt c könnte dann via d zu dem in [2] vorgeschlagenen Phthalazinderivat 7 weiterreagieren. Anstelle des intramolekularen nucleophilen Angriffs der Amidrazon-Struktur in c an der Amidgruppe (\rightarrow d) wird aber wahrscheinlich die elektrophilere Estergruppierung angegriffen, was unter Abspaltung von Äthanol zu e führt. Dieses kann sich dann entweder zum Isoindolinderivat 8 oder zur isomeren Verbindung 12 cyclisieren, wobei Ammoniak eliminiert wird. Die Bevorzugung des Reaktionsweges zu 8 beruht vermutlich auf der grösseren Nucleophilie von N(4) des Triazinsystems gegenüber N(2).

Das Zwischenprodukt e kann aber auch auf einem zweiten Reaktionsweg gebildet werden. Dabei wird durch einen nucleophilen Angriff des Hydrazins an

der Estergruppierung von 6 primär das Hydrazid f gebildet. Intramolekularer nucleophiler Angriff an C(1), gefolgt von Öffnung des 5gliedrigen Phthalimidringes, liefert wiederum e.

Wir danken unseren analytischen Abteilungen für Spektren und Analysen.

LITERATURVERZEICHNIS

- [1] H. Link, K. Bernauer, S. Chaloupka, H. Heimgariner & H. Schmid, Helv. 61, 2116 (1978).
- [2] W. Flitsch & H. Peters, Chem. Ber. 102, 1304 (1969).
- [3] S. Gabriel, Ber. Deutsch. Chem. Ges. 38, 630 (1905); R. Andreasch, Monatsh. Chem. 25, 774 (1904).
- [4] K. Hofmann, A. Lindenmann, M.Z. Magee & N.H. Khan, J. Am. Chem. Soc. 74, 470 (1952).
- [5] H. Heimgartner, Chimia 33, 111 (1979).
- [6] G. Germain, P. Main & M. M. Woolfson, Acta Crystallogr. A27, 368 (1971).